

Welcome to RepoLib’s documentation!

RepoLib is a Python library and CLI tool-set for managing your software
system software repositories. It’s currently set up to handle APT repositories
on Debian-based linux distributions.

RepoLib is intended to operate on DEB822-format sources as well as legacy
one-line format sources. It aims to provide feature parity with
software-properties for most commonly used functions. It also allows for
simple, automated conversion from legacy “one-line” style source to newer
DEB822 format sources. These sources will eventually deprecate the older
one-line sources and are much easier to parse for both human and machine. For a
detailed explanation of the DEB822 Source format, see Explanation of the DEB822 Source Format.

RepoLib provides much faster access to a subset of SoftwareProperties
features than SoftwareProperties itself does. Its scope is somewhat more
limited because of this, but the performance improvements gained are substantial.
SoftwareProperties also does not yet feature support for managing DEB822
format sources, and instead only manages one-line sources.

RepoLib is available under the GNU LGPL.

Developer Documentation

	RepoLib
	Source object
	ident

	name

	enabled

	types

	uris

	suites

	components

	signed_by

	file

	key

	Methods
	reset_values()

	load_from_data()
	data

	generate_default_ident()
	prefix

	ignore_errors

	save()

	deb822

	legacy

	ui

	RepoLib Enums
	SourceFormat

	SourceType

	AptSourceEnabled

	repolib Module
	Module-level Attributes
	VERSION

	LOG_FILE_PATH

	Configuration directories

	DISTRO_CODENAME

	CLEAN_CHARS

	sources

	files

	keys
	compare_sources()
	source1, source2

	excl_keys

	combine_sources()
	source1

	source2

	url_validator()
	url

	validate_debline()
	strip_hashes()
	line

	load_all_sources()

	set_testing()
	testing

	Example
	Creating Source and File Objects

	Adding and Manipulating Data

	Adding the Source to the File

	Saving Data to Disk

RepoLib Documentation

	Explanation of the DEB822 Source Format

	DEB822 Source Format Specifications

	Examples

apt-manage Documentation

	Apt Manage

Installation

There are a variety of ways to install RepoLib

From System Package Manager

If your operating system packages repolib, you can install it by running:

sudo apt install python3-repolib

Uninstall

To uninstall, simply do:

sudo apt remove python3-repolib

From PyPI

Repolib is available on PyPI. You can install it for your current user with:

pip3 install repolib

Alternatively, you can install it system-wide using:

sudo pip3 install repolib

Uninstall

To uninstall, simply do:

sudo pip3 uninstall repolib

From Git

First, clone the git repository onto your local system:

git clone https://github.com/isantop/repolib
cd repolib

Debian

On debian based distributions, you can build a .deb package locally and install
it onto your system. You will need the following build-dependencies:

	debhelper (>= 11)

	dh-python

	lsb-release

	python3-all

	python3-dbus

	python3-debian

	python3-setuptools

	python3-distutils

	python3-pytest

	python3-gnupg

You can use this command to install these all in one go:

sudo apt install debhelper dh-python python3-all python3-setuptools python3-gnupg

Then build and install the package:

debuild -us -uc
cd ..
sudo dpkg -i python3-repolib_*.deb

Uninstall

To uninstall, simply do:

sudo apt remove python3-repolib

setuptools setup.py

You can build and install the package using python3-setuptools. First, install
the dependencies:

sudo apt install python3-all python3-setuptools

Then build and install the package:

sudo python3 ./setup.py install

Uninstall

You can uninstall RepoLib by removing the following files/directories:

	/usr/local/lib/python3.7/dist-packages/repolib/

	/usr/local/lib/python3.7/dist-packages/repolib-*.egg-info

	/usr/local/bin/apt-manage

This command will remove all of these for you:

sudo rm -r /usr/local/lib/python3.7/dist-packages/repolib* /usr/local/bin/apt-manage

Copyright © 2019-2022, Ian Santopietro
All rights reserved.

This file is part of RepoLib.

RepoLib is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

RepoLib is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with RepoLib. If not, see <https://www.gnu.org/licenses/>.

RepoLib

The repolib-module module simplifies working with APT sources, especially
those stored in the DEB822 format. It translates these sources into Python
Objects for easy reading, parsing, and manipulation of them within Python
programs. The program takes a user-defined sources filename and reads the
contents, parsing it into a Python object which can then be iterated upon and
which uses native data types where practicable. The repolib-module module
also allows easy creation of new DEB822-style sources from user-supplied data.

RepoLib

	Source object

	Methods

	RepoLib Enums

repolib Module

The repolib Module is the main module for the package. It allows interfacing
with the various Classes, Subclasses, and Functions provided by RepoLib.

Module-level Attributes

There are a couple of module-level attributes and functions provided directly in
the module.

VERSION

	repolib.VERSION

	Provides the current version of the library.

LOG_FILE_PATH

	repolib.LOG_FILE_PATH

	Stores the current path to the log file

	repolib.LOG_LEVEL

	Stores the current logging level. Note: Change this level using the
module_set_logging_level function.

Configuration directories

repolib.KEYS_DIR
repolib.SOURCES_DIR

Stores the current Pathlib.Path pointing at the signing key and
sources directories, respectively. Used for building path names and reading
configuration.

DISTRO_CODENAME

	repolib.DISTRO_CODENAME

	The current CODENAME field from LSB. If LSB is not available, it will
default to linux.

CLEAN_CHARS

	repolib.CLEAN_CHARS

	A dict which maps invalid characters for the ident attributes
which cannot be used and their replacements. These limitations are based on
invalid characters in unix-compatible filenames.

sources

	repolib.sources

	A dict storing all current sources configured on the system. To save
resources, this list is only loaded/parsed when
module_load_all_sources is called, since many simple operations don’t
need the full list of currently-configured sources.

files

	repolib.files

	A dict containing any source file objects present in the configured
sources dir (See module_dirs). This list is empty until
module_load_all_sources is called, since many simple operations don’t
need the full list of currently-installed config files.

keys

	repolib.keys

	A :obj`dict` containing any installed repository signing keys on the system.
This list is empty until module_load_all_sources is called, since
many simple operations don’tneed the full list of
currently-installed keys.

compare_sources()

	repolib.compare_sources(source1, source2, excl_keys:list) -> bool

	Compares two sources based on arbitrary criteria.

This looks at a given list of keys, and if the given keys between the two
given sources are identical, returns True.

	Returns: bool

	True if the sources are identical, otherwise False.

source1, source2

The two source objects to compare.

excl_keys

list A list of DEB822key names to ignore when comparing. Even if these
items don’t match, this function still returns true if all other keys match.

combine_sources()

	repolib.combine_sources(source1, source2) -> None

	Copies all of the data in source2 and adds it to source1.

This avoids duplicating data and ensures that all of both sources’ data are
present in the unified source

source1

The source into which both sources should be merged

source2

The source from which to copy to source1

url_validator()

	repolib.url_validator(url: str) -> bool

	Validates a given URL and attempts to see if it’s a valid Debian respository
URL. Returns True if the URL appears to be valid and False if not.

url

:obj:`str`The url to validate

validate_debline()

	repolib.util.validate_debline(line: str) -> bool

	Validate if the provided debline line is valid or not.

Returns True if line is valid, otherwise False.

str The line to validate

strip_hashes()

	repolib.strip_hashes(line: str) -> str

	Strips leading hash (#) characters from a line and returns the result.

line

str The line to strip

load_all_sources()

repolib.load_all_sources() -> None

Loads all sources from the current system configuration.

set_testing()

	repolib.set_testing(testing: bool = True) -> None

	Enables or disables testing mode in Repolib

When in testing mode, repolib will operate within a temporary directory
rather tan on your live system configuration. This can be used for testing
out changes to the program without worry about changes to the system config.
It’s also used for unit testing.

testing

bool - Wether testing mode should be enabled (True) or not (False)

Example

The following code as a Python program that creates in example.sources file
in /etc/apt/sources.list.d with some sample data, then modifies the suites
used by the source and prints it to the console, before finally saving the new,
modified source to disk:

import repolib
source = repolib.Source()
file = repolib.SourceFile(name='example')

source.ident = 'example-source'
source.name = 'Example Source'
source.types = [repolib.SourceType.BINARY]
source.uris = ['http://example.com/software']
source.suites = ['focal']
source.components = ['main']
file.add_source(source)

print(source.ui)

file.save()

When run with the appropriate arguments, it prints the contents of the source to
console and then saves a new example.sources file:

$
example-source:
Name: Example Source
Enabled: yes
Types: deb
URIs: http://example.com/software
Suites: focal
Components: main

$ ls -la /etc/apt/sources.list.d/example.sources
-rw-r--r-- 1 root root 159 May 1 15:21 /etc/apt/sources.list.d/example.sources

Below is a walkthrough of this example.

Creating Source and File Objects

The first step in using RepoLib is creating Source object
and File object:

source = repolib.Source()
file = repolib.SourceFile(name='example')

The Source object will hold all of the information for the source to be
created. The File object represents the output file on disk, and allows
for advanced usage like multiple sources per file.

Adding and Manipulating Data

The Source object contains attributes which describe the connfiguration
aspects of the source required to fetch and install software. Generally, these
attributes are lists of strings which describe different aspects of the source.
They can be set or retrieved like any other attributes:

source.uris = ['http://example.com/software']
source.suites = ['focal']

This will add a focal suite to our source and add a URI from which to
download package lists.

Source object also presents a dict-like interface for setting and getting
configuration data. Key names are case-insensitive and their order within the
object are preserved.

Adding the Source to the File

Before the Source object can be saved, it needs to be added to a
File object:

file.add_source(source)

This will add source to the file’s lists of sources, as well as setting the
source’s file attribute to file.

Saving Data to Disk

Once a source has the correct data and has been added to a file object, it can
be saved into the system configuration using file-save:

file.save()

When called, this writes the sources stored in the file to disk. This does not
destroy the object, so that it may be further manipulated by the program.

Note

While data within the source or file objects can be manipulated after
calling file-save, any subsequent changes will not be automatically
written to disk as well. The file-save method must be called to
commit changes to disk.

Source object

The Source object is the base class for all of the sources used within RepoLib.
The Source class itself is a subclass of the deb822() class from the Python
Debian module, which provides a dict-like interface for setting data as well as
several methods for dumping data to files and other helpful functions.

	class repolib.Source (file=None)

	Create a new Source object.

The Source object has the following attributes:

	ident - The system-identifier to use for this source.

	name - The human-readable name of the source. (default: ‘’)

	enabled - Whether the source is enabled or not at creation.
(default: True)

	types - A list of the types that the source should use.
(default: [])

	uris - A list of URIs from which to fetch software or check for
updates. (default: [])

	suites - Suites in which to narrow available software. (default:
[])

	components - Components of the source repository to enable.
(default: [])

	signed_by - The path to the signing key for this source

	file - The File object for this source

	key - The Key object for this source.

	twin_source: - This source should be saved with both binary and
source code types enabled.

The following decribe how each of these are used.

ident

The ident is the system-identifier for this source. This determines the
filename the source will use on-disk as well as the way to specify a source to
load.

name

This is a human-readable and nicely-formatted name to help a user recognize
what this source is. Any unicode character is allowed in this field. If a
source is opened which doesn’t have a name field, the filename will be used.

name is a string value, set to '' by default. If there is no name in
a loaded source, it will be set to the same as the filename (minus the
extension).

This field maps to the X-Repolib-Name: field in the .sources file, which
is ignored by Apt and other standards-compliant sources parsers.

enabled

Apt sources can be disbaled without removing them entirely from the system. A
disabled source is excluded from updates and new software installs, but it can
be easily re-enabled at any time. It defaults to True.

This field maps to the Enabled: field in the .sources file. This is optional
per the DEB822 standard, however if set to anything other than no, the
source is considered enabled.

types

Debian archives may contain either binary packages or source code packages, and
this value specifies which of those Apt should look for in the source. deb
is used to look for binary packages, while deb-src looks for source code
packages. RepoLib stores this value as a list of aptsourcetype-enum`s, and
defaults to ``[AptSourceType.BINARY]`.

This field maps to the Types: field in the sources file.

uris

A list of string values describing the URIs from which to fetch package lists
and software for updates and installs. The currently recognized URI types are:

	file

	cdrom

	http

	ftp

	copy

	rsh

	ssh

DEB822 sources may directly contain an arbitrary number of URIs. Legacy sources
may also have multiple URIs; however, these require writing a new deb line for
each URI as the one-line format only allows a single URI per source.

Note

Although these are the currently-recognized official URI types, Apt can be
extended with additional URI schemes through extension packages. Thus it is
not recommended to parse URIs by type and instead rely on user input
being correct and to throw exceptions when that isn’t the case.

suites

The Suite, also known as the distribution specifies a subdirectory of the
main archive root in which to look for software. This is typically used to
differentiate versions for the same OS, e.g. disco or cosmic for Ubuntu,
or squeeze and unstable for Debian.

DEB822 Sources allow specifying an arbitrary number of suites. One-line sources
also support multiple suites, but require an additional repo line for each as
the one-line format only allows a single suite for each source.

This value maps to the Suites: field in the sources file.

components

This value is a list of strings describing the enabled distro components to
download software from. Common values include main, restricted,
nonfree, etc.

signed_by

The path to the keyring containing the signing key used to verify packages
downloaded from this repository. This should generally match the
key-path attribute for this source’s key object.

file

The File object for the file which contains this source.

key

The Key object for this source.

Methods

	Source.get_description() -> str

	Returns a str containing a UI-compatible description of the source.

reset_values()

	Source.reset_values()

	Initializes the Source’s attributes with default data in-order. This is
recommended to ensure that the fields in the underlying deb822 Dict are
in order and correctly capitalized.

load_from_data()

	Source.load_from_data(data: list) -> None

	Loads configuration information from a list of data, rather than using
manual entry. The data can either be a list of strings with DEB822 data, or
a single-element list containing a one-line legacy line.

data

The data load load into the source. If this contains a legacy-format one-line
repository, it must be a single-element list. Otherwise, it should contain a
list of strings, each being a line from a DEB822 configuration.

generate_default_ident()

	Source.generate_default_ident(prefix: str = ‘’) -> str

	Generates a suitable default ident, optionally with a prefix, and sets it.
The generated ident is also returned for processing convenience.

prefix

The prefix to prepend to the ident.

generate_default_name()

	Source.generate_default_name() ->

	Generates a default name for the source and sets it. The generated name is
also returned for convenience.

load_key()

	Source.load_key(ignore_errors: bool = True) -> None

	Finds the signing key for this source spefified in signed_by and
loads a Key object for it.

ignore_errors

If False, raise a exc_sourceerror if the key can’t be loaded or doesn’t
exist.

save()

	Source.save()

	Proxy method for the file-save method for this source’s
File object.

There are three output properties which contain the current source data for
output in a variety of formats.

deb822

	Source.deb822

	A representation of the source data as a DEB822-formatted string

legacy

	Source.legacy

	A one-line formatted string of the source. It twin_source is True,
then there will additionally be a deb-src line following the primary
line.

ui

	Source.ui

	A representation of the source with certain key names translated to better
represent their use in a UI for display to a user.

RepoLib Enums

RepoLib uses a variety of Enums to help ensure that data values are consistent
when they need to be set to specific string values for compatibility.

SourceFormat

	repolib.SourceFormat()

	Encodes the two formats of source files, either .list for legacy format
files or .sources for DEB822-formatted files.

	DEFAULT - DEB822 formatting (value: "sources")

	LEGACY - Legacy, one-line formatting (value: "list")

SourceType

	repolib.SourceType()

	Encodes the type of packages the repository provides (binary or source code).

	BINARY - Binary package source type (value: "deb")

	SOURCECODE - Source code package type (value : "deb-src")

AptSourceEnabled

	repolib.AptSourceEnabled()

	Used to encode whether the source is enabled or not.

	TRUE - The source should be enabled (value: "yes").

	FALSE - The source should not be enabled (value: "no").

Explanation of the DEB822 Source Format

The sources described in /etc/apt/sources.list.d/ on a Debian-based OS are
designed to support any number of different active and inactive sources, as well
as a large variety of source media and transport protocols. The files describe
one or more sources each and contain multiline stanzas defining one or more
sources per stanza, with the most preferred source listed first. Information
about available packages and versions from each source is fetched using the
apt update command, or with an equivalent command from a different frontend.

sources.list.d

APT source information is stored locally within the /etc/apt/sources.list.d
directory. In this directory are one or more files describing one or more
sources each. For Deb822-style Format sources, each file needs to have the .sources
extension. The filenames may only contain letters, digits, underscore, hyphen,
and period characters. Files with other characters in their filenames will cause
APT to print a notice that it has ignore that file (unless the file matches a
pattern in the Dir::Ignore-Files-Silently configuration list, which will
force APT to silently ignore the file.

One-Line-Style Format

In order to understand some of the decisions behind using the Deb822-style Format
sources, it is helpful to understand the older One-Line-Style Format.

One-Line-Style Format sources occupy one line in a file ending in .list.
The line begins with a type (i.e. deb or deb-src followed by options and
arguments for this type. Individual entries cannot be continued onto multiple
lines (hence the “one-line” portion of this format’s name). Empty lines in
.list files are ignored, and a # character anywhere on the line signifies
that the remainder of that line is a comment. Consequently an entry can be
disabled by commenting out that entire line (prefixing it with a #). If
options are provided, they are space-separated and all together are enclosed
within square brackets ([]). Options allowing multiple values should
separate each value with a comma (,) and each option name is separated
from its values by an equals sign (=).

This is the traditional format and is supported by all current APT versions.
It has the advantage of being relatively compact for single-sources and
relatively easy for humans to parse.

Disadvantages

Problems with the One-Line-Style Format begin when parsing entries via machine.
Traditional, optionless entries are relatively simple to parse, as each
different portion of the entry is separated with a space. With options, however,
this is no longer the case. The presence of options causes there to be no, 1, or
multiple segments of configuration between the type declaration and the URI.
Additionally, APT sources support a variety of URI schemas, with the capability
for extensions to add additional schemas on certain configurations. Thus,
supporting modern, optioned One-Line-Style Format source entries requires use
of either regular expressions or multi-level parsing in order to adequately
parse the entry. Further compounding this support is the fact that
One-Line-Style Format entries can have one or more components, preventing
parsing of sources backwards from the end towards the front.

Consider the following examples:

deb [] http://example.com.ubuntu disco main restricted multiverse universe
deb [arch=amd64] http://example.com/ubuntu disco main nonfree
deb [lang=en_US] http://example.com/ubuntu disco main restricted universe multiverse
deb [arch=amd64,armel lang=en_US,en_CA] http://example.com/ubuntu disco main

Each of these entries are syntactically valid source entries, each cleanly
splits into eight segments when splitting on spaces. Depending on which entry
being parsed, the URI portion of the entry may be in index 2, 4, or 5 while
options (where present) may be in index 1, 2, or 3. If we want to work backwards,
then the URI is in either index -3, -4, or -6. The only segments guaranteed to
be present at any given index is the type. The situation is even more
complicated when considering that entries may have at a minimum 3 elements, and
at a maximum 12 or more elements.

In addition to parsing difficulty, One-Line-Style Format entries may only
specify a single suite and URI per entry, meaning that having two active mirrors
for a given source requires doubling the number of entries configured. You must
also create an extra set of duplicated entries for each suite you want to
configure. This can make tracking down duplicated entries difficult for users
and leads to longer-than-necessary configuration.

Deb822-style Format

This format addresses the file-length, duplication, and machine-parsability
issues present in the One-Line-Style Format. Each source is configured in a
single stanza of configuration, with lines explicitly describing their
function for the source. They also allow for lists of values for most options,
meaning that mirrors or multiple suites can be defined within a single source. A
character at the beginning of a line marks the entire line as a comment.
Entries can again be disabled by commenting out each line within the stanza;
however, as a convenience this format also brings an Enabled: field which,
when set to no disables the entry as well. Removing this field or setting it
to yes re-enables it. Options have the same format as every other field,
thus a stanza may be parsed by checking the beginning of each line for a fixed
substring, and if the line doesn’t match a known substring, it can be assumed
the line is an option and the line can be ignored. Unknown options are ignored
by all versions of APT. This has the unintentional side effect of adding
extensibility to the source; by selecting a carefully namespaced field name,
third-party applications and libraries can add their own fields to sources
without causing breakage by APT. This can include comments, version information,
and (as is the case with repolib-module, pretty, human-readable names.

From the sources.list(5) manual page:

This is a new format supported by apt itself since version 1.1. Previous
versions ignore such files with a notice message as described earlier. It is
intended to make this format gradually the default format, deprecating the
previously described one-line-style format, as it is easier to create,
extend and modify for humans and machines alike especially if a lot of
sources and/or options are involved.

DEB822 Source Format Specifications

Following is a description of each field in the deb822 source format.

Enabled:

	Enabled: (value: “yes” or “no”, required: No, default: “yes”)

	Tells APT whether the source is enabled or not. Disabled sources are not
queried for package lists, effectively removing them from the system
sources while still allowing reference or re-enabling at any time.

Types:

	Types: (value: “deb” or “deb-src”, required: Yes)

	Defines which types of packages to look for from a given source; either
binary: deb or source code: deb-src. The deb type references a
typical two-level Debian archive providing packages containing pre-compiled
binary data intended for execution on user machines. The deb-src type
references a Debian distribution’s source code in the same form as the deb
type. A deb-src line is required to fetch source pacakge indices.

URIs:

	URIs: (value: string(s), required: Yes)

	The URI must specify the base of the Debian distribution archive, from which
APT finds the information it needs. There must be a URI component present in
order for the source to be valid; multipls URIs can be configured
simultaneously by adding a space-separated list of URIs.

A list of the current built-in URI Schemas supported by APT is available at
the Debian sources.list manpage [https://manpages.debian.org/stretch/apt/sources.list.5.en.html#URI_SPECIFICATION].

Suites:

	Suites: (value: strings(s), required: Yes)

	The Suite can specify an exact path in relation to the URI(s) provided, in
which case the Components: must be omitted and suite
must end with a slash (/). Alternatively, it may take the form of
a distribution version (e.g. a version codename like disco or artful
). If the suite does not specify a path, at least one
deb822-field-component must be present.

Components:

	Components: (value: string(s), required: see Suites:)

	Components specify different sections of one distribution version present in
a Suite. If Suites: specifies an exact path, then no
Components may be specified. Otherwise, a component must be present.

Options

Sources may specify a number of options. These options and their values will
generally narrow a set of software to be available from the source or in some
other way control what software is downloaded from it. An exhaustive list of
options can be found at the
Debian sources.list manpage [https://manpages.debian.org/stretch/apt/sources.list.5.en.html#THE_DEB_AND_DEB-SRC_TYPES:_OPTIONS].

RepoLib-Specific Deb822 Fields

RepoLib presently defines a single internal-use fields which it adds to deb822
sources that it modifies.

X-Repolib-Name:

	X-Repolib-Name: (value: string, required: no, default: filename)

	This field defines a formatted name for the source which is suitable for
inclusion within a graphical UI or other interface which presents source
information to an end-user. As a repolib-module specific field, this
is silently ignored by APT and other tools operating with deb822 sources and
is only intended to be utilized by repolib-module itself.

Examples

The following specifies a binary and source-code source fetching from the
primary Ubuntu archive with multiple suites for updates as well as several components:

Enabled: yes
Types: deb deb-src
URIs: http://archive.ubuntu.com/ubuntu
Suites: disco disco-updates disco-security disco-backports
Components: main universe multiverse restricted

This is a source for fetching Google’s Chrome browser, which specifies a CPU
architecture option and a RepoLib Name:

X-Repolib-Name: Google Chrome
Enabled: yes
URIs: http://dl.google.com/linux/chrome/deb
Suites: stable
Components: main
Architectures: amd64

This specifies a source for downloading packages for System76’s Pop!_OS:

X-Repolib-Name: Pop!_OS PPA
Enabled: yes
Types: deb
URIs: http://ppa.launchpad.net/system76/pop/ubuntu
Suites: disco
Components: main

Following is a PPA source which has been disabled:

X-Repolib-Name: ZNC Stable
Enabled: no
Types: deb
URIs: http://ppa.launchpad.net/teward/znc/ubuntu
Suites: disco
Components: main

Apt Manage

apt-manage is a command line tool for managing your local software sources
using RepoLib. Run apt-manage standalone to get a listing of all of the
software repositories currently configured:

$ apt-manage
Configured sources:
system
pop-os-apps
ppa-system76-pop

apt-manage operates on both DEB822-formated sources (located in the
/etc/apt/sources.list.d/*.sources files) as well as using traditional
one-line format sources (in /etc/apt/sources.list.d/*.list files).

apt-manage Documentation

	Adding Sources
	Options for adding sources
	Source Code, Details, Disabling Sources

	Source File Format

	Names and Identifiers

	Listing Configuration Details
	Listing all details of all sources at once
	Note

	Legacy sources.list entries

	Modifying Sources
	Enabling/Disabling Sources: –enable | –disable

	Changing names of sources: –name

	Suites: –add-suite | –remove-suite

	Components: –add-component | –remove-component

	URIs: –add-uri | –remove-uri
	Notes

	Removing Sources

	Managing Signing Keys
	Existing Keyring Files, –name, –path

	Keyring Files Stored on the Internet, –url

	Keys Stored on a Public Keyserver

	Adding ASCII-Armored Keys Directly, –ascii

	Removing Keys

Adding Sources

The add subcommand is used to add new repositories to the software sources.
You can specify a deb-line to configure into the system or a ppa: shortcut
to add the new source directly:

$ sudo apt-manage add deb http://apt.pop-os.org/ubuntu disco main
$ sudo apt-manage add ppa:system76/pop

If an internet connection is available, apt-manage will additionally attempt
to install the signing key for any ppa: shortcuts added.

Options for adding sources

Various options control adding sources to the system.

Source Code, Details, Disabling Sources

To enable source code for the added repository, use the --source-code flag:

$ apt-manage add --source-code ppa:system76/pop

The new source can be disabled upon adding it using the --disable flag:

$ apt-manage add --disable ppa:system76/pop

Details for the PPA are printed for review prior to adding the source by default.
This will print the generated configuration for the source as well as any
available details fetched for the source (typically only available for PPA
sources). To suppress this output, include --terse.

Source File Format

The format which RepoLib saves the repository on disk in depends on the type of
repository being added, but regardless the --format flag can be used to
force either legacy .list format or modern .sources format:

apt-manage add popdev:master --format=list
apt-manage add ppa:system76/pop --format=sources

Names and Identifiers

Names for PPA sources are automatically detected from Launchpad if an internet
connection is available. Otherwise they are automatically generated based on the
source type and details. Optionally, a name can be specified when the source is
added:

$ apt-manage add ppa:system76/pop --name "PPA for Pop_OS Software"

System-identifiers determine how the source is subsequently located within RepoLib and
on the system. It matches the filename for the source’s configuration file. It
is automatically generated based on the source type, or can be specified
manually upon creation using the --identifier flag:

$ apt-manage add ppa:system76/pop --identifier pop-ppa

Note

Even though apt-manage allows modifcation or management of DEB822-format
sources, it does not currently support adding them to the system directly.
DEB822 sources can be manually added or added using third-party tools, and
apt-manage will correctly operate on them subsequently.

Listing Configuration Details

To get a list of all of the sources configured on the system, use the list
subcommand:

$ apt-manage list
Configured sources:
system - Pop_OS System Sources
pop-os-apps - Pop_OS Applications
ppa-system76-pop - Pop!_OS PPA

The sources are listed with the system source (if detected/configured) first,
followed by all DEB822-format sources detected first, then by all one-line
format sources. The system-identifier (used to identify sources in the system)
is listed at the beginning of the line, and the name of the source is listed
after.

Details of an individual source can be printed by specifying a source’s
system-identifier:

$ apt-manage list ppa-system76-pop
Details for source ppa-system76-pop:
Name: Pop!_OS PPA
Enabled: yes
Types: deb deb-src
URIs: http://apt.pop-os.org/release
Suites: focal
Components: main

Listing all details of all sources at once

Details about all sources can be listed at once using the --verbose flag:

$ apt-manage list --verbose
Configured sources:
system - Pop_OS System Sources
Name: Pop_OS System Sources
Enabled: yes
Types: deb deb-src
URIs: http://us.archive.ubuntu.com/ubuntu/
Suites: focal focal-security focal-updates focal-backports
Components: main restricted universe multiverse

pop-os-apps - Pop_OS Applications
Name: Pop_OS Applications
Enabled: yes
Types: deb
URIs: http://apt.pop-os.org/proprietary
Suites: focal
Components: main

ppa-system76-pop - Pop!_OS PPA
Name: Pop!_OS PPA
Enabled: yes
Types: deb deb-src
URIs: http://apt.pop-os.org/release
Suites: focal
Components: main

Note

Passing the --verbose flag only applies to listing all sources. It has no
effect if a source is specified using the system-identifier; in that case, only
the specified source is printed. Additionally, if there are sources files which
contain errors, the --verbose flag will print details about them, including
the contents of the files and the stack trace of the exception which caused the
error.

Legacy sources.list entries

The contents of the system sources.list file can be appended to the end of
the output using the --legacy flag.

Modifying Sources

Modifications can be made to various configured sources using the modify
subcommand.

Enabling/Disabling Sources: –enable | –disable

Sources can be disabled, which prevents software/updates from being installed
from the source but keeps it present in the system configuration for later use
or records for later. To disable a source, use --disable:

$ apt-manage modify ppa-system76-pop --disable

To re-enable a source after it’s been disabled, use --enable:

$ apt-manage modify ppa-system76-pop --enable

Changing names of sources: –name

RepoLib allows setting up human-readable names for use in GUIs or other
user-facing contexts. To set or change a name of a source, use --name:

$ apt-manage modify ppa-system76-pop --name "Pop_OS PPA"

Suites: –add-suite | –remove-suite

Suites for sources can be added or removed from the configuration. In one-line
sources, these are added with multiple lines, since each one-line source can
have only one suite each. DEB822 sources can have multiple suites.

To add a suite, use --add-suite:

$ apt-manage modify ppa-system76-pop --add-suite groovy

Use --remove-suite to remove a suite:

$ apt-manage modify ppa-system76-pop --remove-suite focal

Components: –add-component | –remove-component

Both types of source format can have multiple components for each source. Note
that all components for one-line format sources will share all of a source’s
components.

Components are managed similarly to suites:

$ apt-manage modify system --add-component universe
$ apt-manage modify system --remove-component restricted

URIs: –add-uri | –remove-uri

DEB822 sources may contain an arbitrary number of URIs. One-line sources require
an additional line for each individual URI added. All suites on a source are all
applied to all of the URIs equally.

URIs are managed similarly to both suites and components:

$ apt-manage modify system --add-uri http://apt.pop-os.org/ubuntu
$ apt-manage modify system --remove-uri http://us.archive.ubuntu.com/ubuntu

Notes

Multiple modifications may be applied on a single apt-manage modify calls:

$ apt-manage modify system --name "Pop_OS 20.10 System Sources" \
 --add-suite groovy \
 --remove-suite focal focal-proposed \
 --add-uri http://apt.pop-os.org/ubuntu \
 --remove-uri http://us.archive.ubuntu.com/ubuntu

Removing Sources

To remove a source from the system configuration, use the remove
subcommand:

$ apt-manage remove ppa-system76-pop

Managing Signing Keys

Signing keys are an important part of repository security and are generally
required to be used in repositories for all recent versions of APT. As previous
methods of handling Apt keys have been deprecated, Apt Manage provides easy
tools to use for managing signing keys for repositories in the key
subcommand.

Most of the tools in the key subcommand are centered around adding a signing
key to a repository:

apt-manage key repo-id --fingerprint 63C46DF0140D738961429F4E204DD8AEC33A7AFF

Apt Manage supports adding keys from a variety of sources:

Existing Keyring Files, –name, –path

--name sets the signed_by value of the existing repository to the
name of a file within the system key configuration directory:

apt-manage key popdev-master --name popdev

--path sets the signed_by value of the existing repository to the
path of a file on disk:

apt-manage key popdev-master --path /etc/apt/keyrings/popdev-archive-keyring.gpg

Keyring Files Stored on the Internet, –url

--url will download a key file from the internet and install it into the
system, then set the repository to use that key:

apt-manage key popdev-master --url https://example.com/sigining-key.asc

Keys Stored on a Public Keyserver

--fingerprint will fetch the specified fingerprint from a public keyserver.
By default, keys will be fetched from keyserver.ubuntu.com, but any SKS
keyserver can be specified using the --keyserver= argument:

apt-manage key ppa-system76-pop \
 --fingerprint=E6AC16572ED1AD6F96C7EBE01E5F8BBC5BEB10AE

apt-manage key popdev-master \
 --fingerprint=63C46DF0140D738961429F4E204DD8AEC33A7AFF \
 --keyserver=https://keyserver.example.com/

Adding ASCII-Armored Keys Directly, –ascii

--ascii Will take plain ascii data from the command line and add it to a new
keyring file, then set the repository to use that key:

apt-manage key popdev-master --ascii "$(/tmp/popdev-key.asc)"

Removing Keys

Generally, manually removing keys is not necessary because removing a source
automatically removes the key (if it is the only source using that key). However,
If there is a need to remove a key manually (e.g. the signing key has changed
and must be re-added), then removal is supported:

apt-manage key popdev-master --remove

This will remove the key from the repository configuration and if no other
sources are using a particular key, it will also remove the keyring file from
disk.

Index

Installation

There are a variety of ways to install RepoLib

From System Package Manager

If your operating system packages repolib, you can install it by running:

sudo apt install python3-repolib

Uninstall

To uninstall, simply do:

sudo apt remove python3-repolib

From PyPI

Repolib is available on PyPI. You can install it for your current user with:

pip3 install repolib

Alternatively, you can install it system-wide using:

sudo pip3 install repolib

Uninstall

To uninstall, simply do:

sudo pip3 uninstall repolib

From Git

First, clone the git repository onto your local system:

git clone https://github.com/isantop/repolib
cd repolib

Debian

On debian based distributions, you can build a .deb package locally and install
it onto your system. You will need the following build-dependencies:

	debhelper (>= 11)

	dh-python

	lsb-release

	python3-all

	python3-dbus

	python3-debian

	python3-setuptools

	python3-distutils

	python3-pytest

	python3-gnupg

You can use this command to install these all in one go:

sudo apt install debhelper dh-python python3-all python3-setuptools python3-gnupg

Then build and install the package:

debuild -us -uc
cd ..
sudo dpkg -i python3-repolib_*.deb

Uninstall

To uninstall, simply do:

sudo apt remove python3-repolib

setuptools setup.py

You can build and install the package using python3-setuptools. First, install
the dependencies:

sudo apt install python3-all python3-setuptools

Then build and install the package:

sudo python3 ./setup.py install

Uninstall

You can uninstall RepoLib by removing the following files/directories:

	/usr/local/lib/python3.7/dist-packages/repolib/

	/usr/local/lib/python3.7/dist-packages/repolib-*.egg-info

	/usr/local/bin/apt-manage

This command will remove all of these for you:

sudo rm -r /usr/local/lib/python3.7/dist-packages/repolib* /usr/local/bin/apt-manage

Exceptions

RepoLib throws various forms of exceptions to halt execution of code when
incorrect input is detected or deviations from expected norms are encountered.

RepoError()

	Repolib.RepoError()

	This is base exception thrown by RepoLib. All other exceptions are
subclasses of this exception type.

SourceError()

	Repolib.Source.SourceError()

	Raised when errors result from processing within the source_object or
one of it’s subclasses.

DebParseError()

	Repolib.parsedeb.DebParseError()

	Raised due to problems parsing legacy Debian one-line repository lines.

SourceFileError()

	Repolib.file.SourceFileError()

	Raised due to errors handling File object objects.

KeyFileError()

	Repolib.key.KeyFileError()

	Raised due to errors loading/finding key files or Key object objects.

File object

SourceFile objects are the interface between the OS storage and the repolib
Source object items. Files contain sources and comments and allow for
loading sources from and saving them to disk. They also assign idents to sources
in a way that ensures each source has a unique ident.

Attributes

File objects contain the following attributes:

name

	SourceFile.name

	The name of the file on disk. This does not include the file extension, as
that is stored in file-format.

path

	SourceFile.path

	A Pathlib.Path object representing this file’s actual path on disk. Note
that the file may not actually exist on disk yet.

format

	SourceFile.format

	The format this file should be saved in. Saved as a enum_sourceformat.

contents

	SourceFile.contents

	A list containing, in order, every comment line and source in this
file.

sources

	SourceFile.sources

	A list containing, in order, only the sources in this file.

Methods

add_source()

	SourceFile.add_source(source) -> None

	Adds a given source to the file. This correctly appends the source to both
the file-contents and file-sources lists, and sets the
source-file attribute of the source to this file.

source

The source to add to the file.

remove_source()

	SourceFile.remove_source(ident: str) -> None

	Removes the source with a specified ident from this file.

ident

The ident of the source to remove from the file.

get_source_by_ident()

	SourceFile.get_source_by_ident(ident: str) -> Source

	Finds a source within this file given a specified ident and returns the
Source object matching that ident. If the file does not contain a
Source matching the given ident, raises a exc_sourcefileerror.

ident

The ident to look up.

	SourceFile.reset_path() -> None

	Attempts to detect the full path to the file given the file-name
attribute for this file. If the name.sources exists on disk, the path
will be set to that, otherwise if the name.list exists, it will be set
to that instead. Failing both, the path will fallback to name.sources as
a default.

load()

	SourceFile.load() -> None

	Loads the file specified by path from disk, creating sources and
comments and appending them in order to the file-contents and
file-sources lists as appropriate.

save()

	SourceFile.save() -> None

	Saves the file and any sources currently configured to disk. This method
must be called to commit changes to disk. If the file currently contains no
sources, then the file will instead be deleted.

Output

There are four attributes which contain the output of the files stored as
strings and which are ready for full output in the specified format.

deb822

	SourceFile.deb822

	Outputs the entire file as DEB822-formatted sources

legacy

	SourceFile.legacy

	Outputs the entire file as one-line legacy-formatted deb lines

ui

	SourceFile.ui

	Outputs the file in a format for output through a UI (e.g. for preview or
external parsing.)

output

	SourceFile.output

	Outputs the entire file in the format matching that configured in
file-format.

Key object

The SourceKey object is the representation for signing keys used to validate
software packages downloaded from repositories.

Attributes

path

	SourceKey.path

	A Pathlib.Path object pointing to this key’s file location on disk.

gpg

	SourceKey.gpg

	A gnupg.GPG object used for importing and manipulating GPG data.

data

	SourceKey.data

	The binary data stored in this key, used to verify package signatures.

Methods

reset_path()

	SourceKey.reset_path(name:str=’’, path:str=’’, suffix:str=’archive-keyring’) -> None

	(Re)sets the path object for this key to the key file specified. If a name
is given, then the file is expected to be located within the system default
signing key directory /etc/apt/keyrings. If a path is spefified,
then it is assumed to be the full path to the keyring file on disk.

name

The name of a keyring file located within the system signing key directory, less
any suffix or file extensions.

path

The absolute path to a keyring file located at any readable location on disk.

suffix

A suffix to append to the file name before the file extension. (Default:
'archive-keyring')

setup_gpg()

	SourceKey.setup_gpg() -> None

	Sets up the key-gpg object for this key and loads key data from disk
(if present).

save_gpg()

	SourceKey.save_gpg() -> None

	Saves the GPG key data to disk.

delete_key()

	SourceKey.delete_key() -> None

	Deletes the key file from disk.

load_key_data()

	SourceKey.load_key_data(raw=|ascii=|url=|fingerprint=) -> None

	Fetches and loads a key from some remote source. Keys can be loaded from one
of:

	Raw internal data (bytes)

	ASCII-armored keys (str)

	Internet URL download (str)

	Public GPG Keyserver Fingerprint (str)

raw=data (bytes)

Load a key from raw binary data. This is ideal when importing a key which has
already been loaded from a binary data file or stream.

ascii=armor (str)

Load a key from an ASCII-Armored string.

url=url (str)

Download a key over an HTTPS connection. Note that keys should only be downloaded
from secure sources.

fingerprint=fingerprint (str)

Fetch the key specified by fingerprint from a public keyserver.

Repository Shortcuts

Repolib supports adding repositories via abbreviated shortcuts (such as
ppa:system76/pop or popdev:master) where the format of the shortcut is
given in the form of a prefix, and the data required to expand the shortcut into
a full repository is provided, with a colon character separating the two parts.
These function as subclasses of the Source object with specialized
functionality. Currently there is support for Launchpad PPAs and Pop_OS
Development branches automatically.

Launchpad PPAs

	repolib.PPASource()

	RepoLib has built-in support for adding Launchpad PPA shortcuts, similarly to
add-apt-repository. Launchpad shortcuts take the general form:

ppa:owner-name/ppa-name

If an internet connection is available, RepoLib can automatically fetch the
repository signing key as well as metadata like the description, human-readable
name, etc.

Pop_OS Development Branches

	repolib.PopdevSource()

	RepoLib can automatically add Pop_OS development branches for testing unstable
pre-release software before it is ready for general use. Development branch
shortcuts take the form:

popdev:branch-name

If an internet connection is available, then RepoLib will also add the signing
key for the branch (if it is not already added).

Adding Shortcut Repositories

Shortcuts are generally added similarly to loading a different source from data,
the main difference being that in the call to load_from_data the only
element in the data list should be a string of the shortcut:

ppa_source = repolib.PPASource()
ppa_source.load_from_data(['ppa:system76/pop'])

popdev_source = repolib.PopdevSource()
popdev_source.load_from_data(['popdev:master'])

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to RepoLib’s documentation!

 		
 RepoLib

 		
 Source object

 		
 ident

 		
 name

 		
 enabled

 		
 types

 		
 uris

 		
 suites

 		
 components

 		
 signed_by

 		
 file

 		
 key

 		
 Methods

 		
 reset_values()

 		
 load_from_data()

 		
 generate_default_ident()

 		
 save()

 		
 deb822

 		
 legacy

 		
 ui

 		
 RepoLib Enums

 		
 SourceFormat

 		
 SourceType

 		
 AptSourceEnabled

 		
 repolib Module

 		
 Module-level Attributes

 		
 VERSION

 		
 LOG_FILE_PATH

 		
 Configuration directories

 		
 DISTRO_CODENAME

 		
 CLEAN_CHARS

 		
 sources

 		
 files

 		
 keys

 		
 compare_sources()

 		
 combine_sources()

 		
 url_validator()

 		
 validate_debline()

 		
 strip_hashes()

 		
 load_all_sources()

 		
 set_testing()

 		
 Example

 		
 Creating Source and File Objects

 		
 Adding and Manipulating Data

 		
 Adding the Source to the File

 		
 Saving Data to Disk

 		
 Explanation of the DEB822 Source Format

 		
 sources.list.d

 		
 One-Line-Style Format

 		
 Disadvantages

 		
 Deb822-style Format

 		
 DEB822 Source Format Specifications

 		
 Enabled:

 		
 Types:

 		
 URIs:

 		
 Suites:

 		
 Components:

 		
 Options

 		
 RepoLib-Specific Deb822 Fields

 		
 X-Repolib-Name:

 		
 Examples

 		
 Apt Manage

 		
 Adding Sources

 		
 Options for adding sources

 		
 Listing Configuration Details

 		
 Listing all details of all sources at once

 		
 Legacy sources.list entries

 		
 Modifying Sources

 		
 Enabling/Disabling Sources: –enable | –disable

 		
 Changing names of sources: –name

 		
 Suites: –add-suite | –remove-suite

 		
 Components: –add-component | –remove-component

 		
 URIs: –add-uri | –remove-uri

 		
 Removing Sources

 		
 Managing Signing Keys

 		
 Existing Keyring Files, –name, –path

 		
 Keyring Files Stored on the Internet, –url

 		
 Keys Stored on a Public Keyserver

 		
 Adding ASCII-Armored Keys Directly, –ascii

 		
 Removing Keys

_static/ajax-loader.gif

